

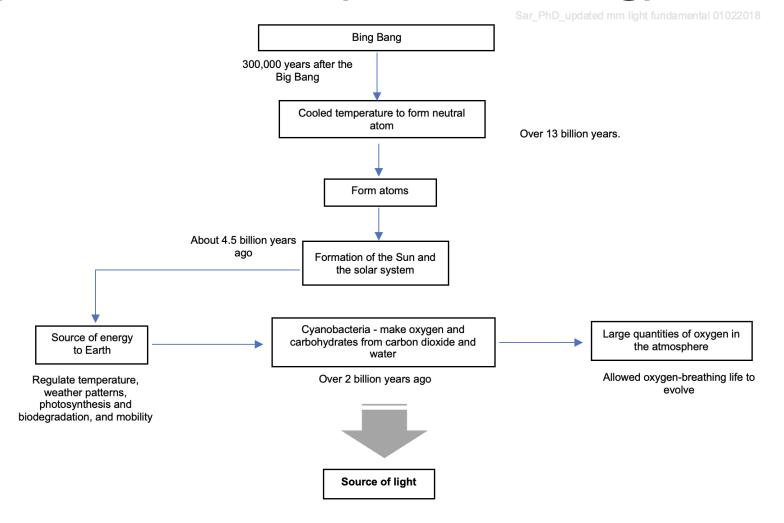




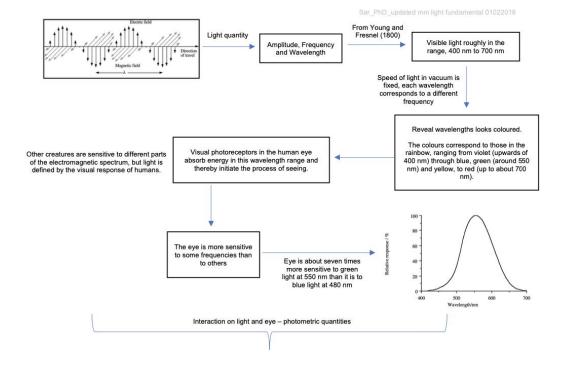
# Ergonomic and Clinical Setting Lighting: Improving Productivity and Well-Being Among Healthcare Provider

By:

Dr Saiful Azlan Rosli (MOC: 0-00870)


B.Optom (Hons.), M.Optom, PhD (Optometry)




12/10/2025



# Lighting – brief introduction in vision science perspective – theory, terminology, concept







| Symbol         | Name                                                                   | Description                                                      | Units                             |  |
|----------------|------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------|--|
| $Q_v$          | Luminous energy                                                        |                                                                  | lumen sec<br>(lm s)               |  |
| $\Phi_{\rm v}$ | Luminous flux                                                          | Rate of transfer of luminant energy                              | lumen                             |  |
| M <sub>v</sub> | Luminous Excitance<br>or flux density<br>(formerly luminous emittance) | Luminant power per unit area                                     | Im m <sup>-2</sup>                |  |
| L <sub>v</sub> | Luminance<br>(formerly brightness)                                     | nit (nt) or<br>candela/m <sup>2</sup><br>or lm/sr·m <sup>2</sup> |                                   |  |
| I,             | Luminous Intensity<br>(formerly candlepower)                           | Luminous power per unit solid<br>angle from a point source       | candela or<br>lm/sr               |  |
| E <sub>v</sub> | Illuminance<br>(formerly illumination)                                 | Luminous power per unit area<br>incident upon a surface          | lux or lx<br>or lm/m <sup>2</sup> |  |
| K              | Luminous efficacy                                                      | $K = \Phi_v / \Phi_\rho$                                         | lm/w                              |  |

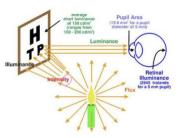



Figure 8. Photometric quantities illustrating flux, intensity, illuminance and luminance. Retinal illuminance of 2945 trolands is achieved through a pupil diameter of 5 mm and a chart luminance of 150 cd/m2.

Application of illuminance e and luminance

#### Typical Illuminance and Luminance Values

| Situation                                    | Illuminance (lm/m <sup>2</sup> ) | Typical Surface       | Luminance (cd/m²) |
|----------------------------------------------|----------------------------------|-----------------------|-------------------|
| Clear sky in summer in<br>temperate zones    | 100,000                          | Grass                 | 3,200             |
| Overcast sky in summer<br>in temperate zones | 16,000                           | Grass                 | 500               |
| Textile inspection                           | 1,500                            | Light grey cloth      | 140               |
| Office work                                  | 500                              | White paper           | 120               |
| Heavy engineering                            | 300                              | Steel                 | 20                |
| Good road lighting                           | 10                               | Concrete road surface | 1.0               |
| Moonlight                                    | 0.5                              | Asphalt road surface  | 0.01              |

12/10/2025





Contents lists available at ScienceDirect



### **IATSS Research**



### Research Article

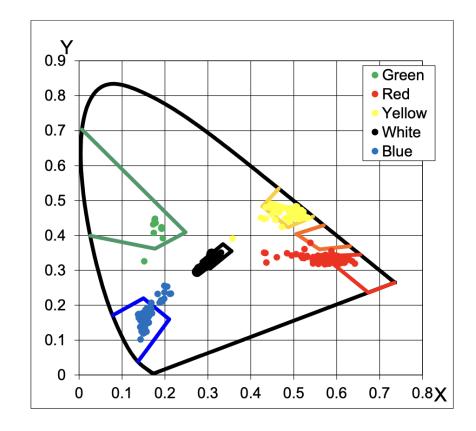
### Assessing the color status and daylight chromaticity of road signs through machine learning approaches

Roxan Saleh a,b,\*, Hasan Fleyeh A, Moudud Alam A, Arend Hintze A

- <sup>a</sup> School of Information and Engineering, Dalarna University, Borlänge 781 70, Sweden
- <sup>b</sup> Swedish Transport Administration, Röda Vägen 1, Borlänge 781 89, Sweden

#### ARTICLE INFO

Article history:
Received 24 February 2023
Received in revised form 25 May 2023
Accepted 22 June 2023
Available online 12 July 2023


Keywords:
Road signs
Daylight chromaticity
Regression
Classification
Prediction
Machine learning algorithms

#### ABSTRACT

The color of road signs is a critical aspect of road safety, as it helps drivers quickly and spond to these signs. Properly colored road signs improve visibility during the day at to make informed decisions while driving. In order to ensure the safety and efficiency to maintain the appropriate color level of road signs.

The objective of this study was to analyze the color status and daylight chromaticit supervised machine learning models, and to explore the correlation between road si maticity. Three algorithms were employed: Random Forest (RF), Support Vector Ma Neural Network (ANN). The data used in this study was collected from road signs to Sweden.

The study employed classification models to assess the color status (accepted or rejec on minimum acceptable color levels according to standards, and regression models t maticity values. The correlation between road sign's age and daylight chromaticity w sion analysis. Daylight chromaticity describes the color quality of road signs in daylight



**Fig. 2.** Location of the measured road signs on CIE diagram (points falling outside the respective color box indicate rejected state).





# Light measurement – illuminance/lux meter (unit: lux)

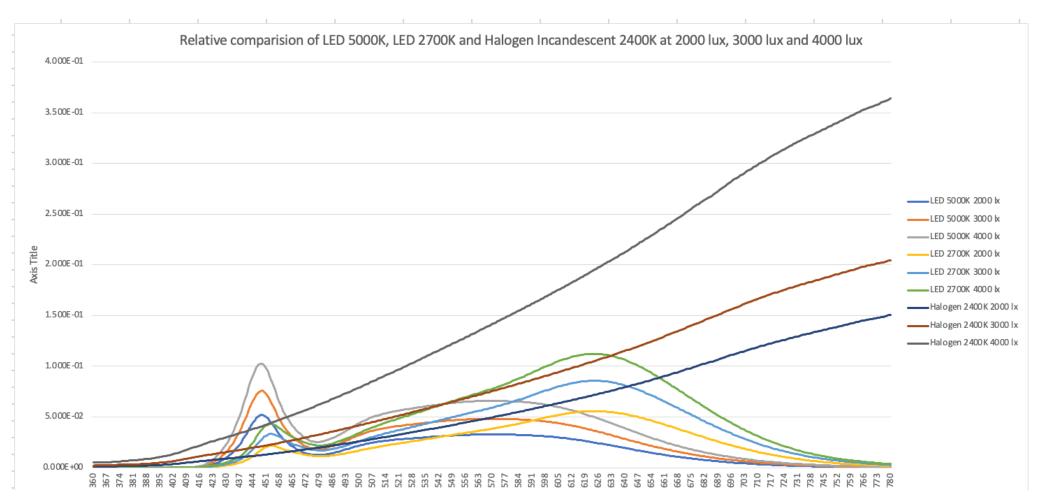




Illuminance Spectrophotometer






# Light measurement - lux meter - application

|          | ı       | LED 5000 | K       | ι       | LED 2700 | K       | Ha      | logen 240 | ОК      |
|----------|---------|----------|---------|---------|----------|---------|---------|-----------|---------|
|          | 2000 lx | 3000 lx  | 4000 lx | 2000 lx | 3000 lx  | 4000 lx | 2000 lx | 3000 lx   | 4000 lx |
| a        | 83      | 83       | 83      | 92      | 92       | 93      | 99      | 99        | 99      |
| 1        | 81      | 81       | 81      | 93      | 93       | 92      | 99      | 99        | 99      |
| 2        | 87      | 86       | 86      | 97      | 97       | 96      | 100     | 100       | 100     |
| 3        | 91      | 91       | 91      | 99      | 98       | 98      | 100     | 100       | 100     |
| 4        | 83      | 83       | 83      | 92      | 92       | 92      | 99      | 99        | 99      |
| 5        | 82      | 82       | 82      | 92      | 92       | 92      | 99      | 99        | 99      |
| 6        | 82      | 82       | 81      | 96      | 96       | 95      | 100     | 100       | 100     |
| 7        | 87      | 87       | 87      | 92      | 92       | 92      | 99      | 99        | 99      |
| 8        | 69      | 69       | 69      | 81      | 81       | 81      | 98      | 98        | 98      |
| 9        | 10      | 10       | 10      | 60      | 59       | 59      | 96      | 96        | 97      |
| 10       | 68      | 68       | 68      | 91      | 91       | 90      | 99      | 99        | 99      |
| 11       | 83      | 83       | 83      | 92      | 92       | 92      | 99      | 99        | 99      |
| 12       | 63      | 63       | 64      | 82      | 82       | 82      | 99      | 99        | 99      |
| 13       | 82      | 82       | 82      | 94      | 94       | 93      | 99      | 99        | 99      |
| 14       | 95      | 95       | 95      | 99      | 98       | 98      | 100     | 100       | 100     |
| 15       | 75      | 75       | 75      | 89      | 89       | 89      | 99      | 99        | 99      |
|          |         |          |         |         |          |         |         |           |         |
| /P Ratio | 1.97    | 1.97     | 1.97    | 1.30    | 1.30     | 1.30    | 1.33    | 1.39      | 1.40    |
|          |         |          |         |         |          |         |         |           |         |





# Light measurement - lux meter - application







# Light measurement – luminance meter (unit: cd/m<sup>2</sup>





2D Colour Analyser CA-2500

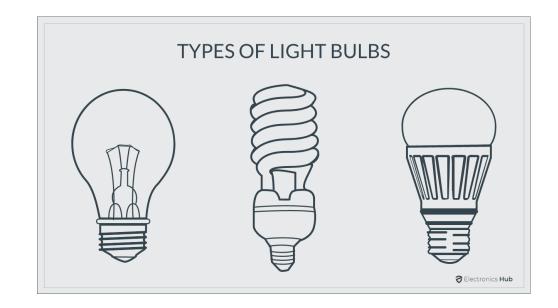




# Light measurement - luminance meter – application

Table 3.9
The View and Luminance Evaluation on The Electronic and Non-Electronic Surface

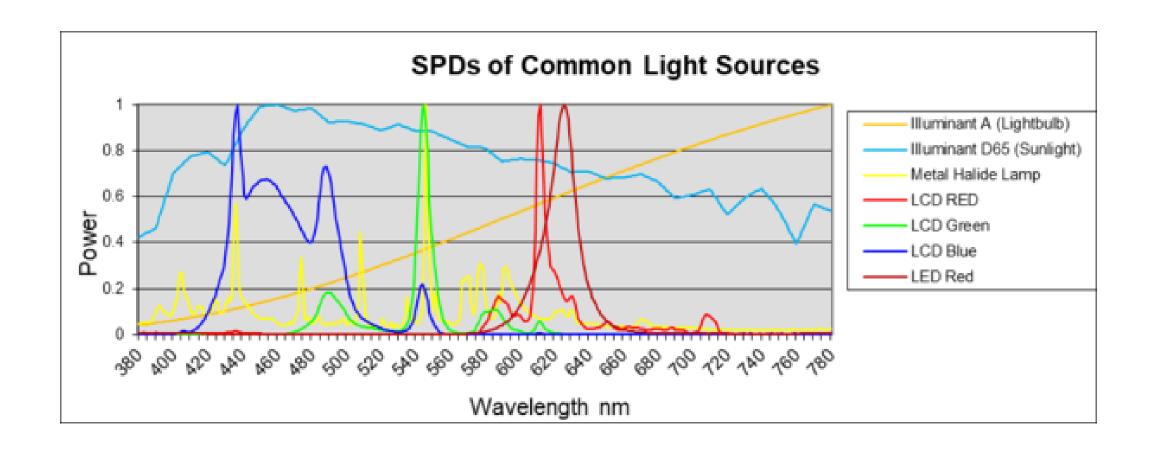
-Against Background Luminance evaluation on display and Subject view Reading Media background Electronic (Laptop) Non-electronic (Hardcopy on laptop)






# Types of light












## Spectral Power Distribution (SPD)







## Why Lighting Matters in Healthcare?

# Impact on Patient Health and Recovery

- Physical and Mental Health (Aghajari & Chen, 2024; Zhang et al., 2024)
- Circadian Rhythm (Aguilar-Carrasco et al., 2025; Ritchie et al., 2015)
- Sleep Quality (Hadi et al., 2019)

# Impact on Healthcare Staff

- Job Satisfaction and Stress Reduction (Lo Verso et al., 2016)
- Visual Comfort and Performance (Aguilar-Carrasco et al., 2025)

# **Energy Efficiency and Cost Reduction**

- Energy Consumption (Aghajari & Chen, 2024)
- Natural Light Utilization (Alsarraf & Alobaidi, 2020)

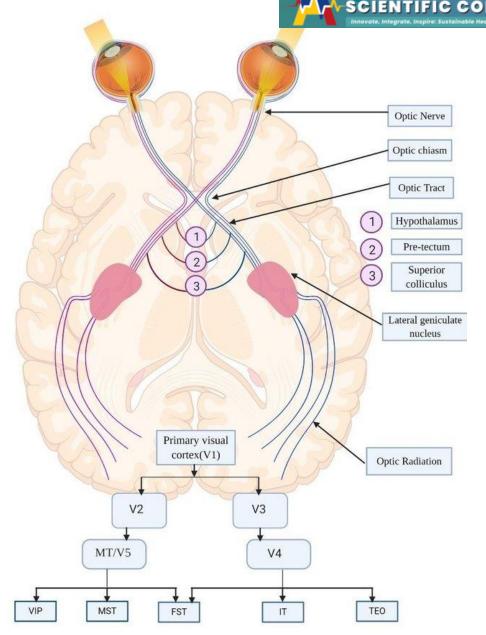




## Visual vs Non-Visual Pathway

| Feature                    | Visual Pathway                                                                       | Non-Visual Pathway                                                                                        |
|----------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Primary Function           | Vision (image formation, object recognition, spatial awareness)                      | Regulation of physiological and behavioral responses to light (e.g., circadian rhythm, hormone secretion) |
| Main Light-Sensitive Cells | Retinal photoreceptors (Rods & Cones)                                                | Intrinsically photosensitive retinal ganglion cells (ipRGCs)                                              |
| Photopigment               | Rhodopsin (rods) and Photopsins (cones)                                              | Melanopsin (ipRGCs)                                                                                       |
| Pathway to the Brain       | Retina → Optic Nerve → Lateral Geniculate Nucleus (LGN) → Primary Visual Cortex (V1) | Retina → ipRGCs → Suprachiasmatic Nucleus (SCN)<br>& Other Brain Regions                                  |
| Conscious Perception?      | Yes (responsible for sight, color vision, and depth perception)                      | No (modulates circadian rhythms, pupil size, mood, and alertness)                                         |
| Role in Lighting Response  | Determines brightness, contrast, and color                                           | Regulates sleep-wake cycles, alertness, and hormone production (e.g., melatonin suppression)              |
| Effect of Blue Light       | Enables color vision and enhances contrast sensitivity                               | Strongly influences circadian rhythms and alertness (high sensitivity to blue light ~480 nm)              |




### The Visual Pathway

### **Components:**

Includes the retina, optic nerve, optic chiasm, optic tracts, lateral geniculate nucleus (LGN), optic radiations, and the visual cortex

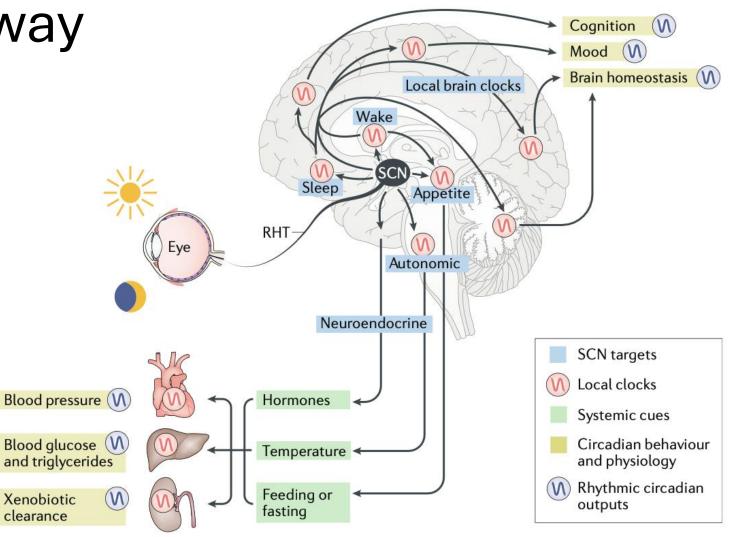
### **Function:**

Responsible for processing visual stimuli, including visual acuity, color vision, depth perception, and contrast sensitivity. It supports the perception and high-order association of visual information








Non-Visual Pathway

### **Components:**

Subcortical structures such as the superior colliculus, pulvinar nucleus, and amygdala

### **Function:**

Processes non-visual stimuli, such as light affecting biological rhythms and emotional responses. It is involved in rapid processing of emotion-related information and can function independently of the primary visual cortex



Hastings, M. H., Maywood, E. S., & Brancaccio, M. (2018). Generation of circadian rhythms in the suprachiasmatic nucleus. *Nature reviews. Neuroscience*, *19*(8), 453–469.





## **Optimal Lighting Standards**

Our Gool



Preventing eye strain

Promoting comfortable vision

Supporting visual development

Human body regulation





# Sufficient Brightness (Illuminance)

- Recommended brightness: 300 to 500 lux for reading or writing.
- Even distribution of light

# Appropriate Color Temperature

- Cool white light (4000K-5000K)
- Warm light (2700K-3000K)

### **Minimizing Glare**

- Indirect lighting
- Anti-glare screens or filters

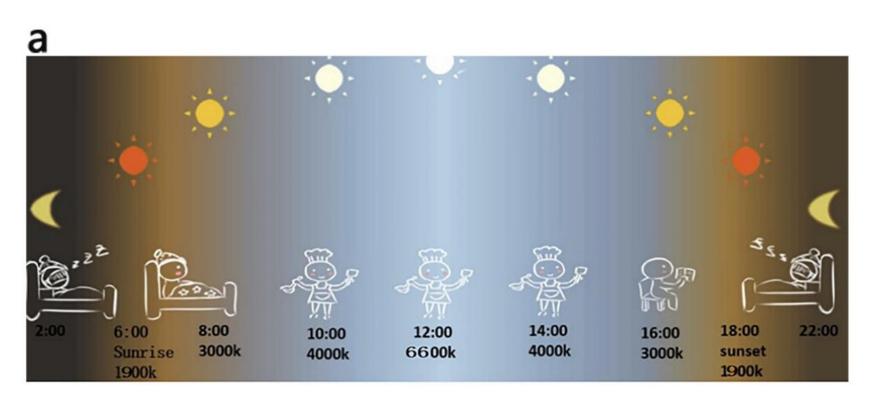
# Balanced Natural and Artificial Light

- Natural daylight
- Artificial light

### **Lighting for Screen Use**

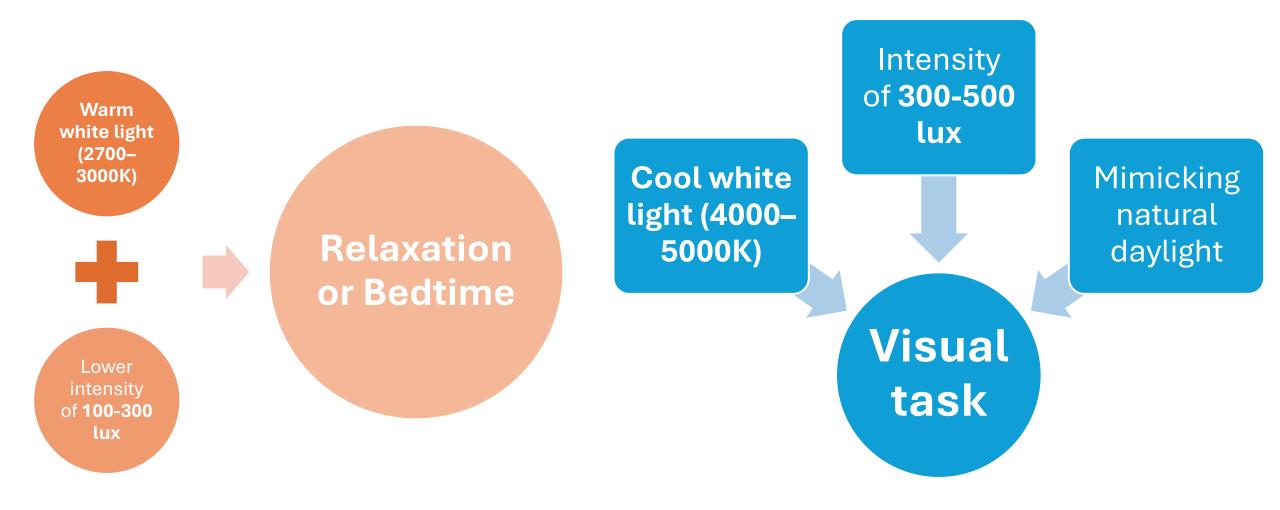
- Reduce blue light exposure
- Adjust ambient lighting

### **Eye Health Considerations**


- Frequent breaks
- Vision check-ups

@sar2025\_iROViS FSK UiTM






### **Appropriate Light Intensity and Color Temperature**



Schematic illustration of the relationships between sun and human's biological rhythm











### Positive Effects of Blue Light

# Circadian Rhythm Regulation

 Helping to reset the body clock to align with the natural day-night cycle (Benke & Benke, 2013)

Cognitive
Performance and
Alertness

- Enhance cognitive functions such as attention, alertness, and reaction time (Charkhabi et al., 2025)
- Improve mood and alleviate symptoms of seasonal affective disorder (SAD) by boosting alertness and cognitive performance (Benke & Benke, 2013)

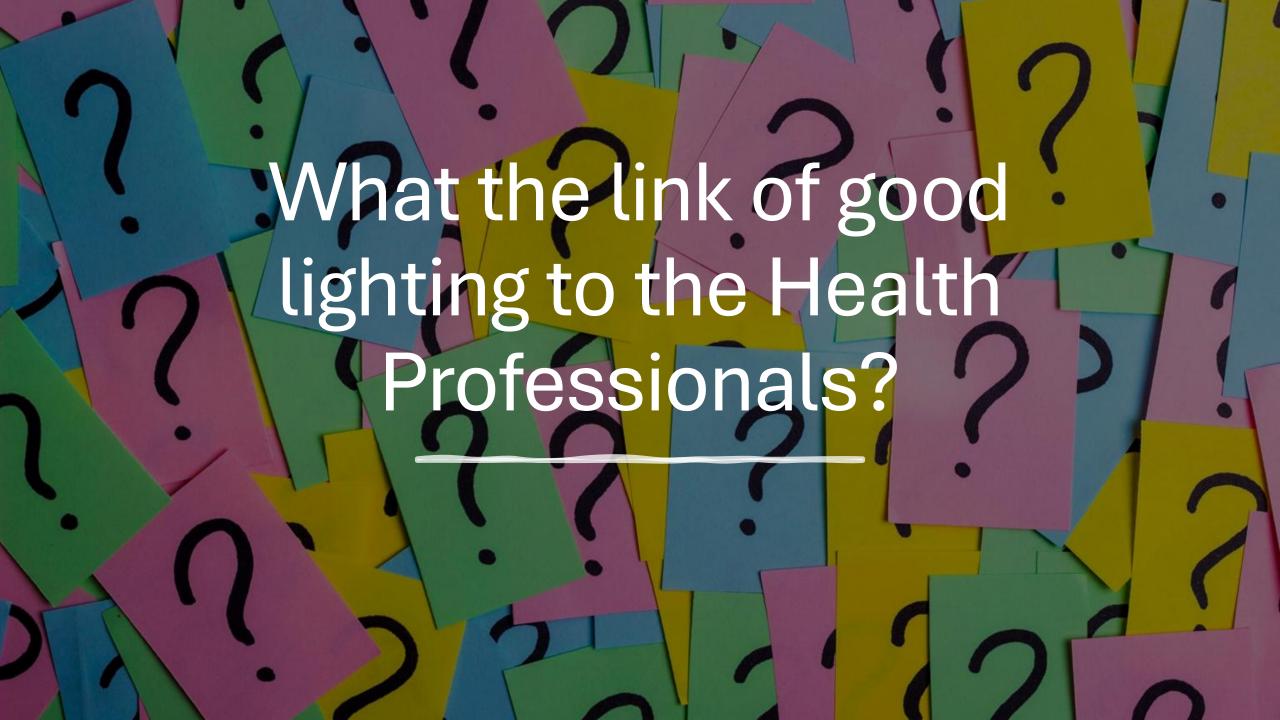






## Harmful Effects of Blue Light

### **Sleep Disruption**


 Exposed at night, suppresses melatonin → circadian misalignment, poor sleep, reduced performance (Benke & Benke, 2013).

### **Health Risks**

 Metabolic dysregulation, increased risk of type 2 diabetes, obesity, and certain cancers such as breast and prostate cancer (Benke & Benke, 2013).

### Eye Health

 Long-term exposure → retinal damage, ↑ risk of AMD, cataracts; causes digital eye strain, headaches, dry eyes (Tosini et al., 2016).





Castro et al. Critical Care 2011, 15:218 http://ccforum.com/content/15/2/218



#### REVIEW

### The effect of light on critical illness

Ricardo Castro<sup>1\*</sup>, Derek C Angus<sup>2</sup>, Matt R Rosengart<sup>3</sup>

This article is one of eleven reviews selected from the *Annual Update in Inte* co-published as a series in *Critical Care*. Other articles in the series can be fo information about the Annual Update in Intensive Care and Emergency Medica

> "We shape our buildings, and afterwards our buildings shape us." Winston Churchill

#### Introduction

The research of this decade has yielded substantial improvements in the delivery of and technology with which to provide care for critically ill intensive care unit (ICU) patients. Garnering less attention from the medical and scientific community is the environment in which that care is provided, which remains impersonal, noisy, and over illuminated. Noticeably, the nursing and business literature is replete with studies on the matter [1,2].

This discussion will focus on the available evidence regarding associations between the ICU environment, specifically light, and patient outcome. Definitions of th



IMPACT OF WINDOWS AND DAYLIGHT ON NURSES' HEALTH RESEARCH

### The Impact of Windows and Daylight on Acute-Care Nurses' Physiological, **Psychological, and Behavioral Health**

Rana Sagha Zadeh, MArch, PhD; Mardelle McCuskey Shepley, BA, MArch, MA, DArch; Gary Williams, MSN, RN; and Susan Sung Eun Chung, PhD(c)

#### ABSTRACT

OBJECTIVE: To investigate the physiological and psychological effects of windows and daylight on registered nurses.

BACKGROUND: To date, evidence has indicated that appropriate environmental lighting with characteristics similar to natural light can improve mood, alertness, and performance. The restorative effects of windows also have been documented. Hospital workspaces generally lack windows and daylight, and the impact of the lack of windows and daylight on healthcare employees' well being has not been thoroughly investigated.

METHODS: Data were collected using multiple methods with a quasi-experimental approach (i.e., biological measurements, behavioral mapping, and analysis of archival data) in an acute-care nursing unit with two wards that have similar environmental and organizational conditions, and similar patient populations and acuity, but different availability of windows in the nursing stations.

**RESULTS:** Findings indicated that blood pressure (p < 0.0001) decreased and body temperature increased (p = 0.03). Blood oxygen saturation increased (p = 0.02), but the difference was clinically insignificant. Communication (p < 0.0001) and laughter (p = 0.03) both increased, and the subsidiary behavior indicators of sleeniness and deteriorated mood (p = 0.02) decreased. Heart rate (p = 0.07), caffeine intake (p = 0.3), self-reported sleepiness (p = 0.09), and the frequency of medication errors (p = 0.14) also decreased, but insignificantly.

CONCLUSIONS: The findings support evidence from laboratory and field settings of the benefits of windows and daylight. A possible micro-restorative effect of windows and daylight may result in lowered blood pressure and increased oxygen saturation and a positive effect on circadian rhythms (as suggested by body temperature) and morning sleepiness.

KEYWORDS: Critical care/intensive care, lighting, nursing, quality care,



Research Manuscript

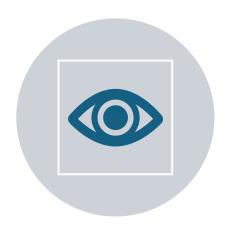


### Lighting the Patient Room of the Future: Evaluating **Different Lighting Conditions** for Performing Typical **Nursing Tasks**

Health Environments Research & Design Journal © The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1937586720972078 journals.sagepub.com/home/her

(\$)SAGE

Ethan Graves, MS<sup>1</sup>, Robert G. Davis, PhD<sup>2</sup>, Jennifer DuBose, MS<sup>1</sup>, Gabrielle C. Campiglia, BS<sup>1</sup>, Andrea Wilkerson, PhD<sup>2</sup>, and Craig Zimring, PhD


#### Abstract

Purpose: This study explores how aspects of lighting in patient rooms are experienced and evaluated by nurses while performing simulated work under various lighting conditions. The lighting conditions studied represent design standards consistent with different environments of care—traditional, contemporary, and future. Background: Recent advances in lighting research and technology create opportunities to use lighting in hospital rooms to improve everyday experience and provide researchers with opportunities to explore a new set of research questions about the effects of lighting on patients, guests, and staff. This study focuses on the experience of nurses delivering simulated patient care. Method: Perceptions of each of the 13 lighting conditions were evaluated by nurses using rating scales for difficulty of task completion, comfort, intensity, appropriateness of the lighting color, and naturalness of the lighting during the task. The nurses' ratings were analyzed alongside qualitative reflections to provide insight into their responses. Results: Significant differences were found for several a priori hypotheses. Interesting findings provide insight into lighting to support circadian synchronization, lighting at night, the distribution of light in the patient room and the use of multiple lighting zones, and the use of colored lighting. Conclusion: The results of this study provide insight into potential benefits and concerns of these new features for patient room lighting systems and reveal gaps in the existing evidence base that can inform future investigations.





### Issues....







**VISUAL PERFORMANCE** 

PATIENT CARE QUALITY

**OVERALL WELL-BEING** 





# Reducing Eye Strain and Fatigue



Nurses work extended hours in different lighting environments.



Poor lighting can lead to discomfort and reduced performance.



Optimal Lighting

Proper lighting can help minimize visual strain and improve focus.



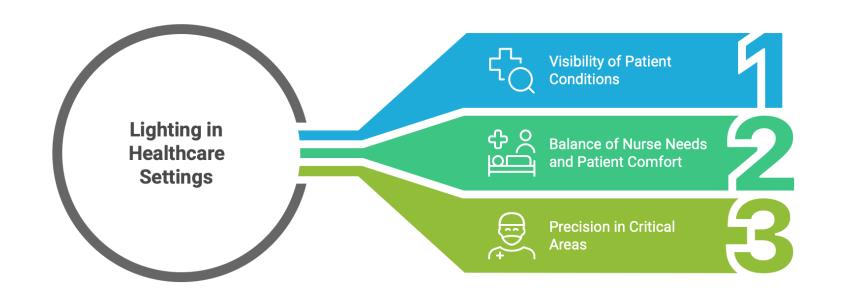


Lighting Design for Shift Work

**Night Shift Work** 

Supporting
Circadian
Rhythms and
Shift Work

Nurses work during night hours, disrupting natural rhvthms. **Better Sleep Artificial Light** Quality **Exposure** Enhanced sleep quality Exposure to artificial light after shifts affects circadian rhythms **Improved Proper Lighting Alertness** Design Better alertness during Implementing blue-light and after shifts reduction and warm lighting.


> Melatonin Regulation

Lighting helps regulate melatonin production.

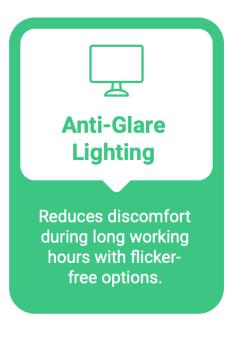


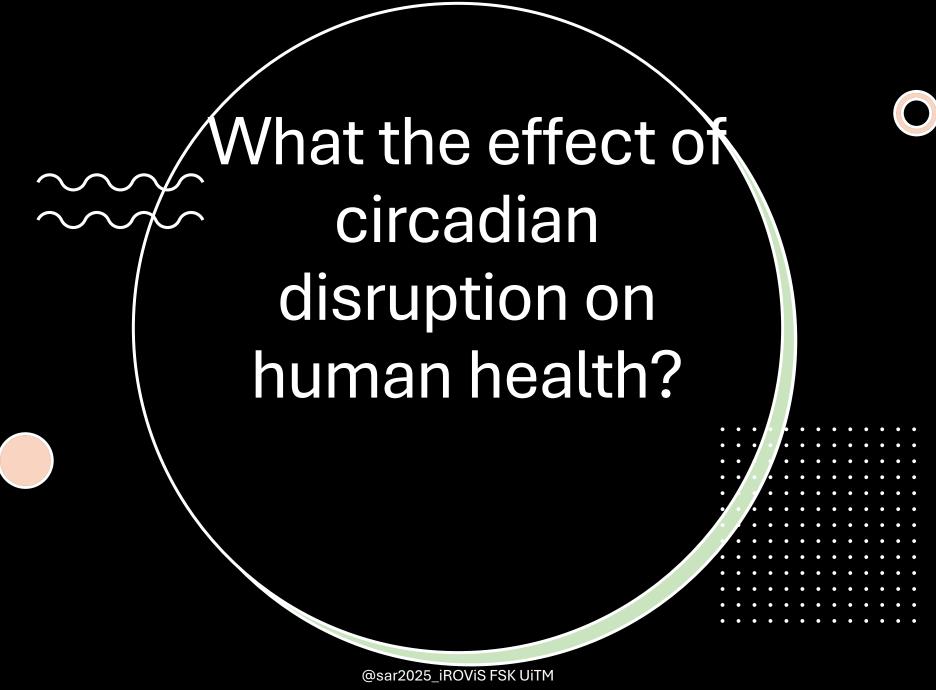


# Enhancing Patient Safety and Care









**Lighting Solutions** 

# Ergonomic Lighting in Workspaces











### **REVIEWS**

# Rhythms of life: circadian disruption and brain disorders across the lifespan

Ryan W. Logan and Colleen A. McClung\*

Abstract | Many processes in the human body — including brain function — are regulated over the 24-hour cycle, and there are strong associations between disrupted circadian rhythms (for example, sleep—wake cycles) and disorders of the CNS. Brain disorders such as autism, depression and Parkinson disease typically develop at certain stages of life, and circadian rhythms are important during each stage of life for the regulation of processes that may influence the development of these disorders. Here, we describe circadian disruptions observed in various brain disorders throughout the human lifespan and highlight emerging evidence suggesting these disruptions affect the brain. Currently, much of the evidence linking brain disorders and circadian dysfunction is correlational, and so whether and what kind of causal relationships might exist are unclear. We therefore identify remaining questions that may direct future research towards a better understanding of the links between circadian disruption and CNS disorders.

Logan, R.W., McClung, C.A. Rhythms of life: circadian disruption and brain disorders across the lifespan. *Nat Rev Neurosci* **20**, 49–65 (2019).



Pflügers Archiv - European Journal of Physiology https://doi.org/10.1007/s00424-020-02381-6

**INVITED REVIEW** 



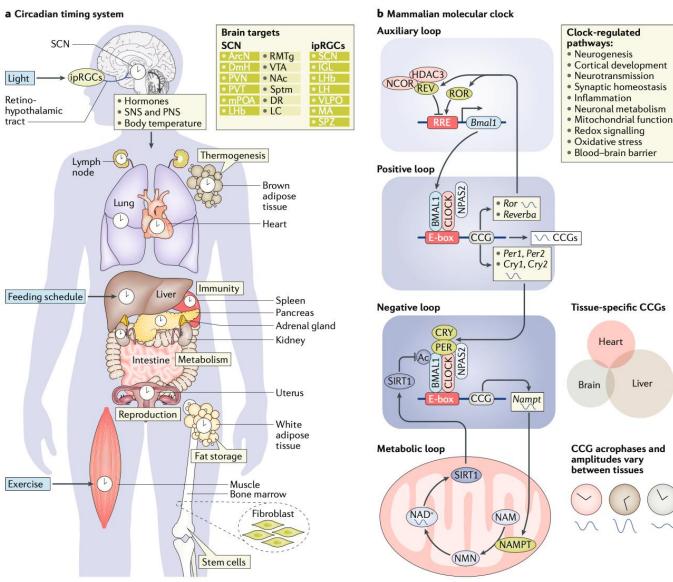
### Metabolic implications of circadian disruption

Narjis Fatima 1 · Sobia Rana 1

Received: 23 January 2020 / Revised: 16 April 2020 / Accepted: 17 April 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

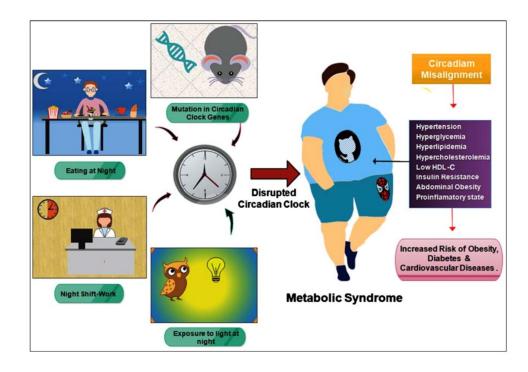
#### **Abstract**

Circadian rhythms are generated by the circadian clock, a self-sustained internal timing system that exhibits 24-h rhythms in the body. In mammals, circadian rhythms are driven by a central clock located in suprachiasmatic nucleus and various peripheral clocks located in different tissues and organs of the body. Many cellular, behavioral, and physiological processes are regulated by the circadian clock in coordination with environmental cues. The process of metabolism is also under circadian regulation. Loss of synchronization between the internal clock and environmental zeitgebers results in disruption of the circadian rhythms that seriously impacts metabolic homeostasis leading to changed eating behavior, altered glucose and lipid metabolism, and weight gain. This in turn augments the risk of having various cardio-metabolic disorders such as obesity, diabetes, metabolic syndrome, and cardiovascular disease. This review sheds light on circadian rhythms and their role in metabolism with the identification of gaps in the current knowledge that remain to be explored in these fields. In this review, the molecular mechanisms underlying circadian rhythms have been elaborated first. Then, the focus has been kept on explaining the physiological significance of circadian rhythms in regulating metabolism. Finally, the implications for metabolism when these rhythms are disrupted due to genetic mutations or social and occupational needs enforced by modern lifestyle have been discussed.


Keywords Circadian rhythms · Metabolism · Clock genes · Shift-work · Gut microbiota · Metabolic disorders

#### Introduction

Since the down of life arganisms have undergone evalutionary


cellular, biochemical, physiological, and behavioral processes with changing solar cycles throughout the seasons. The environmental cues that synchronize the body's internal clock with

Fatima, N., Rana, S. Metabolic implications of circadian disruption. *Pflugers Arch - Eur J Physiol* **472**, 513–526 (2020)



Logan et al (2019).





Fatima et al (2020)





• Circadian disruption occurs when the body's **internal biological clock** is misaligned with the external environment, often due to **irregular light exposure**, **shift work**, **jet lag**, **or excessive screen time**.

 This misalignment can negatively impact physiological, mental, and metabolic health





# Effect of circadian disruption on human health

Sleep Disorders & Fatigue

Mental Health Disorders

Metabolic Disorders & Obesity

Cardiovascular Diseases Increased Cancer Risk

Reproductive Health Issues



# Sleep Disorders & Fatigue





Delayed or irregular sleep patterns lead to insomnia, reduced sleep quality, and daytime drowsiness.



Increased risk of **shift work sleep disorder (SWSD)** in individuals working **night shifts**.



Poor sleep hygiene results in chronic fatigue and decreased cognitive performance.



# Mental Health Disorders



Circadian disruption is linked to higher risks of depression, anxiety, and mood disorders.

Reduced melatonin production (due to excessive artificial light exposure at night) affects sleep-wake stability, worsening mental health.

**Bipolar disorder and schizophrenia** are associated with **circadian misalignment**.









**Nighttime eating and disrupted meal timing** can impair metabolism, leading to **weight gain and obesity**.



Increased risk of **type 2 diabetes** due to impaired **glucose metabolism and insulin sensitivity**.



Altered **leptin** (satiety hormone) and ghrelin (hunger hormone) **levels** cause **unhealthy eating behaviors**.





# Cardiovascular Diseases

Shift workers have a higher risk of **hypertension**, heart disease, and stroke.

Circadian misalignment affects blood pressure regulation, increasing cardiovascular strain.

Disrupted sleep cycles may lead to **elevated cholesterol and inflammation**, contributing to **atherosclerosis**.









Night shift work is classified as a Group 2A probable carcinogen by the International Agency for Research on Cancer (IARC).

Melatonin
suppression (due to light
exposure at night) leads
to increased cancer cell
growth and DNA damage.

Higher risk of breast cancer, prostate cancer, and colorectal cancer in those with long-term circadian disruption.







**Irregular menstrual cycles** and **reduced fertility** in women due to hormonal imbalances.

Circadian misalignment affects testosterone levels and sperm quality in men.

Increased risk of pregnancy complications, low birth weight, and preterm birth.

Some tips to help health professional to reduce the risk of circadian disruption due to the shift work schedule





# 1. Optimize Light Exposure

### **Bright Light During Night Shifts:**

- Exposure to blue-enriched bright light (5000K–6500K) during night shifts can improve alertness and cognitive performance.
- Strategically timed light exposure helps align the circadian rhythm with the work schedule.

# **Avoid Bright Light After Night Shifts:**

- Wear blue-light-blocking glasses or sunglasses when leaving the hospital in the morning to minimize melatonin suppression.
- Keep the bedroom dark with blackout curtains or an eye mask to promote deeper sleep.





# 2. Follow Sleep Hygiene & Recovery Strategies

# **Prioritize Sleep After Night Shifts:**

- Aim for **7–9 hours of uninterrupted sleep** in a cool, quiet, and dark environment.
- White noise machines or earplugs can help block daytime disturbances.

# **Use Strategic Napping:**

- A **20–30-minute power nap** before a night shift can improve **alertness**.
- Avoid long naps (>1 hour) during the shift to prevent sleep inertia.





# 3. Nutrition & Meal Timing

#### **Avoid Heavy Meals & Caffeine Late in the Shift:**

- Large meals can disrupt digestion and melatonin production, making sleep harder after work.
- Limit caffeine to the first half of the shift to avoid sleep delays post-shift.

#### **Eat Light, High-Protein Snacks:**

• Complex carbohydrates + protein (e.g., nuts, yogurt, whole grains) help maintain steady energy levels.

#### **Stay Hydrated:**

• Dehydration can worsen **fatigue and cognitive decline**. Drink enough **water** throughout the shift.





# 4. Exercise & Mental Health Support

#### **Moderate Exercise:**

- 30 minutes of moderate-intensity exercise before a shift improves alertness.
- Avoid strenuous workouts before bedtime, as they may delay sleep onset.

# **Manage Stress & Mental Health:**

- Mindfulness, deep breathing, and relaxation techniques help reduce shift work stress.
- Social support from colleagues & family helps maintain emotional well-being.





# 5. Smart Scheduling & Work Adjustments

# **Use Forward-Rotating Shifts (If Possible):**

 Shifts rotating morning → evening → night are easier to adjust to than backward rotations.

### **Encourage Breaks & Rest Areas:**

• Short **rest breaks** (including naps if allowed) help maintain **alertness** and reduce errors.

# **Limit Consecutive Night Shifts:**

 Working more than three night shifts in a row increases fatigue and health risks.





# Conclusion



For health professionals, good lighting is not just a matter of comfort but a critical factor in safety, efficiency, and well-being.



Hospitals and healthcare facilities should **invest in evidence-based lighting solutions** to enhance **visual performance, reduce fatigue, support circadian rhythms, and improve overall patient care outcomes**.

# Take home message

LIGHTING AFFECTS BOTH VISUAL AND NON-VISUAL PATHWAYS



POOR LIGHTING CAN HARM HEALTH AND PERFORMANCE



SHIFT WORK AND CIRCADIAN DISRUPTION CAN BE MANAGED



BLUE LIGHT IS A DOUBLE-EDGED SWORD



ERGONOMIC LIGHTING SUPPORTS LONG-TERM EYE AND GENERAL HEALTH

# **ACKNOWLEDGEMENT**

#### **Research Team:**

- Prof Dr Chen Ai Hong
- Assoc Prof Dr Jeffry Hovis,
- Dr Muhammad Akram Adnan
- En. Azmir Ahmad
- Ahmad Mursyid Ahmad Rudin
- Dr Razif Saliman

#### **Research Facilities:**

- Optometry and Visual Sciences (iROViS) RG, Research Nexus of Health & Wellness (HW), Universiti Teknologi MARA (UiTM)
- Centre of Optometry Studies, Faculty of Health Sciences, Universiti Teknologi MARA (UiTM) Selangor.

#### **Research Fund:**

- Fundamental Research Grant Scheme (FRGS) 600-RMI/FRGS 5/3 (5/2015) completed
- Fundamental Research Grant Scheme (FRGS) FRGS/1/2022/SKK06/UITM/01/1– ongoing (PI)
- Scholarship Skim Latihan Akademik IPTA (SLAI) from Ministry of Higher Education Malaysia

# We welcome any collaboration in future





# Thank you